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The class of the even-power series potentials, V(r) = - D  + E~=0 Vkkkr 2k+2, V0 
= to 2 > 0, is studied with the aim of obtaining approximate analytic expressions 
for the nonrelativistic energy eigenvalues, the expectation values for the potential 
and kinetic energy operators, and the mean square radii of the orbits of a particle 
in its ground and excited states. We use the hypervirial theorems (HVT) in 
conjunction with the Hellmann-Feynman theorem (HFT), which provide a very 
powerful scheme for the treatment of the above and other types of potentials, as 
previous studies have shown. The formalism is reviewed and the expressions of 
the above-mentioned quantities are subsequently given in a convenient way in 
terms of the potential parameters, the mass of the particle, and the corresponding 
quantum numbers, and are then applied to the case of the Gaussian potential and 
to the potential V(r) = -Dlcosh2(rlR). These expressions are given in the form 
of series expansions, the first terms of which yield, in quite a number of cases, 
values of very satisfactory accuracy. 

1. ~ T R O D U C T I O N  

Various approaches can be employed in an effort to obtain approximate 

expressions for the energy eigenvalues and other quantit ies of interest for a 
particle moving in a certain potential. Unfortunately,  the majority entail 

cumbersome calculations of matrix elements or the ingenious deduction of 

a trial function. These obstacles can be overcome by using the hypervirial  

theorem (Hirschfelder, 1960) in conjunct ion with the H e l l m a n n - F e y n m a n  
theorem, the HVT-HFT method, which could have been labeled as classical, 

had it not been for the peculiarities of the potential we select each time. 
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Consequently, this method constitutes a very effective alternative to a pure 
perturbation or variational treatment. 

A number of authors have applied variations of this method to several 
potentials (see, e.g., Marc and McMillan, 1985; Fernandez and Castro, 1987; 
McRae and Vrscay, 1992; Swenson and Danforth, 1972; Killingbeck, 1978, 
1985a,b; Grant and Lai, 1979; Lai, 1981, 1982, 1983; Lai and Lin, 1982; 
Mateo et al., 1990; Witwit, 1991a-d; and references therein). The results 
vary each time, according to the properties of the potential in question. The 
scheme makes use of a perturbation parameter k which enables us to expand 
the potential as well as the total energy and the moments in a k-series. The 
first nontrivial term of our expanded potential is then adopted as the unper- 
turbed term of our problem. The energy of the unperturbed Schr6dinger 
equation will serve as a parameter in terms of which the other terms of the 
series will be calculated. 

In the present work we consider a wide class of potentials of the form 

V(r) = - D  + ~ Vkkkr "2k+2, V 0 = oJ 2 > 0 
k=0  

The general formalism for such a class of potentials is thoroughly reviewed 
in the next section and subsequently a general approximate expression of the 
energy eigenvalues is derived in terms of the potential parameters, the mass 
of the particle, and the quantum numbers of the respective eigenstate. In 
Section 3 the corresponding general expressions of the expectation values of 
the kinetic and the potential energy operators are derived, as are those of the 
mean square radius of the orbit of a particle in any bound state in the potential. 

In Section 4 the derived expressions are applied to the well-known 
Gaussian potential and to the Poeschl-Teller (PT)-type potential V(r) -- -D/  
cosh2(r/R), respectively. The final section is devoted to a test of the accuracy 
of the derived expressions by comparing the values they yield mainly with the 
corresponding results obtained with a numerical integration of the Schr6dinger 
equation. This is accomplished by taking as an example the nonrelativistic 
motion of a A-particle in a hypernucleus moving in the above-mentioned 
PT potential. 

2. DESCRIPTION OF THE HVT-HFT SCHEME FOR EVEN- 
POWER SERIES POTENTIALS. DERIVATION OF A GENERAL 
APPROXIMATE EXPRESSION FOR THE ENERGY 
EIGENVALUES 

We consider the class of potentials V(r) mentioned in the introduc- 
tion, namely 
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V(r) = - D  + ~_~ gk~,kr 2k+2 ( l )  
k=0 

where V0 = to 2 > 0. It is obvious that certain anharmonic oscillators, such 
as the V(r) = �89 2 + k lr  m, which was studied in Swenson and Danforth 
(1972; see also p. 339 of Marc and McMillan, 1985, and references therein) 
belong in that class. Furthermore, there also belongs in that class a number 
of potentials encountered in applications. Those potentials are of the form 

V ( r ) =  

where D > 0 is the potential depth, R > 0 is the potential radius, and the 
"potential form factor" f ,  f (0 )  = 1, is an even analytic function of x = 
r/R, namely 

c ~  

f ( x )  = ~ dkX 2k (3) 
k=O 

where dk are the numbers 

1 d 2k 
dk -- (2k)~ dx ~f(x)lx=~ k = 0, l, 2 . . . . .  d~ < 0 (4) 

The radial Schr6dinger equation for the radial wave function u,,t = rRnl(r) 
then reads 

h2 dZ + - -  + Vkh.kr 2k+2 Unt = Enlunl (5) 
2 ~  dr  2 2Ix r 2 k=o 

where/~.t is the shifted energy eigenvalue E~l. That is, 

Enl = Ent + D (6) 

Setting 

__ h E 1(1 + 1) + ~ Vk)kk? .2k+ 2 (7) 
lT"(r) 2Ix r ~ k=0 

we find that the Hamiltonian becomes 

h 2 
= + f'(r) (8) 

2~z dr 2 

As a result the SchrSdinger equation can now be written as 

[ 21 xh2 d2 2 (9) 
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The Hamiltonian H is now identical to the one used by Swenson and Danforth 
(1972), which means that we can make full use of the hypervirial relation 
that they obtained, namely (Swenson and Danforth, 1972; Lai, 1983) 

E,,t(r~nt = -~ (N  + 1) - '  r N+' -~r t 

h z 
+ (rUfOnt -'ff-~ N ( N  - 1) (rU-2)nt (10) 

If we expand the energy /~nt and the moments (r ~) in h-series, we have, 
respectively, 

Enl = ~ E(k)hk ( 1 1 )  
k=0 

oo 

(rN)nl = ~ C~)h k (12) 
k=0 

Note that the indices (nl) on E (k) and C~)+2 have been suppressed for the sake 
of simplicity. According to the above definitions the unperturbed term of our 
potential is 

h z l(l + 1) 
l~~ - + to2r 2 (13) 

2Ix r 2 

and the corresponding energy eigenvalue is 

E (~ = 2~a,l (14) 

which is, in fact, the energy of the Harmonic oscillator. In the interest of 
simplicity we have adopted the following notation: 

ant = (2n + l + 3) (15) 

n = 0, 1, 2, 3 . . . .  (principal quantum number) and I = 0, 1, 2, 3 . . . .  (orbital 
angular momentum quantum number). 

Applying the Hellmann-Feynman theorem (HFT) (Hellmann, 1937; 
Feynman, 1939; Bertlmann and Martin, 1980) to our Hamiltonian, we get 

~ - ~ -  ~ (16) 

After some trivial calculations we obtain 

k 

= -- mVmC2m+2 , 
k m = o  

k ~ 0 (17) 
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Substituting ( l l ) ,  (12), and (17) into (10), we get the familiar recurrence 
relation (Lai, 1983) 

c , k ) -  N +  1 ( ~  E(q)c~-q) [Nl(l+ 1) N(N_4-- 1).] h2 _(/) 
u+z (N + 2)Vo L -N 7- 1 ~ c~,-2 q=0 

N + 3 Vlt-u+4- _(k-l) N + 4 .  r N + k + 2 tz ,..c0) ,] 
N + 1 N + 1 V2LN+6 N + 1 vk'-.U+Zk+2j 

(18) 

where Cr k) = ~ok. 
The recurrence relation (18) is used to evaluate the coefficients E (k) used 

in (11). In fact what we need to do is evaluate the coefficients C~ ) used in 
(12) and (17). We perform this calculation in a hierarchical manner (Lai, 
1982), i.e., to obtain E tl) in (11), we resort to (17), which readily yields 

E (1) = V1C(4 0) (19) 

We still need to calculate the Cr ~ coefficient, which will be extracted from 
(18). Indeed, (18) gives 

C~4 ~ 3 [E<O)C~~ - (21( l ;  1) 
= 4to----- 5 - 1 ) 2 ~ ]  (20) 

To calculate C~2 ~ we need to resort to (18) once more, so that we get 

c 0,- e 
2toz (21) 

E r can be obtained by virtue of (19)-(21). 
The same pattern of calculations is adhered to for each coefficient (either 

E ok) or C~)). Applying this method to the class of potentials given by (1), 
we arrive at the following general expression (where b = hz/21a,): 

Ent = - D  + E ~ + E~~ + E(2)~k 2 -'1- E(3)h 3 + E(4)~k 4 + , - .  

V1 = - D  + 2toa,,tb 1/2 + ~ [12a21 - 4l(1 + 1) + 3]bh 

(22) 

ant [4a~t(17VZ l _ 20VetoZ) 
32~o 5 

+ 12/(1 + 1)(4V2to 2 - 3V~) + 67V 2 - lOOV2o~2]b3/Zh 2 

1 
+ 1024o-------- ~ {80a4t(75V 3 - 132VIV2oj2 + 56V3 ~4) 
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- 8aZt[121(l  + 1)(43V 3 - 84ViV2to 2 

+40V3oJ 4) - 1707V 3 + 20to2(177VlV2 - 98V3to2)] 

+ [ 4 / ( / +  I ) ( l l V  3 - 36V~V2co 2 

+ 24V3o~ 4) - 3(171V 3 - 420V1V2co 2 + 280V3co4)] 

• [ 4 / ( / +  1) - 3]}b2k 3 

ant {48aa[3563V 4 - 8344Vz~V2o~ 2 
8192to tl 

+ 4032 Vl V3 O)4 -I-- 16co4(131 V~ 2 - 84 V4oj2)] 

- 40aZ.t[41(l + 1)(891V 4 - 2280V~V2to 2 

+ 1216VtV3to 4 + 624V2o~ 4 - 448VaoJ  6) 

- 17833V 4 + 47288VlzV2o~ 2 - 28224ViV3to 4 

- 13264V2o~4 + 12096V4co 6] 

+ 48[/(l + 1)]21303V 4 - 1048vZv2to 2 

+ 704VlV3o~ 4 + 16to4(23V 2 - 20V4to2)] 

- 8 t ( l  + 1)(28647v 4 - 85656vZv2to 2 

"l- 58048VIV3O) 4 -{- 27120V2o~ 4 - 28480V4oJ 6) 

+ 305141V 4 - 938248VlZV2co 2 + 673344VlV3o~ 4 

+ 16o~4(19277V 2 - 2 2 4 2 8 V 4 o ~ 2 ) } b S / 2 h  4 + "'" (23) 

For  potentials o f  the general form (2), the above expression may be rewritten 
in terms of  the depth and radius parameters. The relation which links the 
coefficients V k h  k with the potential parameters D and R and the coefficients 
dk is the following: 

D 
Vkh  k = RZk+ z dk+l, k = 0, 1, 2, 3 . . . .  (24) 

Thus, in that case, the expansion for the energy eigenvalue becomes:  

2 a n t ( - D d t ) l / 2  b 1/2 q- -ff---~-R2[12a~t - 41(1 + 1) + 
E . l  = - D + R 8 

3]b 

anl( - D d  l ) I/2 
{ 4aZt (2Odld3  - 17d22) 

3 2 D d a R  3 
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+ 4did3[25 - 121(/+ 1)] + d2136l(l + 1) - 67]}b 3r2 

1 
1024Dd4R 4 {80aat(56d~d4 - 132d~d2d3 + 75d~ 3) 

- 8a2t{40d2d4[121(l + 1) - 49] 

+ 12dld2d31295 - 84l ( /+  1)] + 3d3[1721(1 + 1) - 569]} 

+ [4/ ( /+  1) - 3] 

• {24d~d4141(l + 1) - 35] + 36dld2d3 [35 - 4l(I + 1)] 

+ d31441(1 + 1) - 513]}b 2 + "-" (25) 

It is of interest that equation (25) coincides with the corresponding result of 
Sharma et al. (1980) [once correction of a few misprints or minor errors is 
made (B. Kotsos, private communication)], in which, however, a perturbation 
approach is used and not the HVT-HFT one. That coincidence corroborates 
the validity of the above expressions for E~. 

Equation (25) is suitable for investigating the conditions under which 
the first few terms are sufficient to provide a good approximation to the 
energy eigenvalues. By considering the ratio of successive terms, we easily 
realize that the above condition is satisfied when the parameter s = (h2/ 
21xDR2) u2 is small, that is, when the potential well is quite deep and wide, 
as well as when the particle mass large. 

3. A P P R O X I M A T E  E X P R E S S I O N S  F O R  T H E  <V)nl, <~ni, A N D  

A number of authors have applied the hypervirial relations to specific 
potentials only to obtain an asymptotic series for the energy eigenvalue, the 
general expression of which has been derived in the previous section for the 
class of potentials considered. Nevertheless, the matter of the expectation 
values (with respect to the energy eigenfunctions) of the kinetic energy 
operator <T)nj = <T) and of the potential energy operator (V)nt = <V), and 
mainly of the mean square radius of the orbit of a particle in a given energy 
eigenstate <l'2>nl -~" <F2>, remain to be settled. Below we extract general expres- 
sions for these quantities. 

As for the expectation value of the kinetic and potential energy operators, 
the application of the Hellmann-Feynman theorem (Hellmann, 1937; Feyn- 
man, 1939; Bertlmann and Martin, 1980), according to which 

<T> OE 
- (26)  



2058 Liolios and Grypeos 

yields h-series of  the fo rm 

and 

(73 = ~ T(k)h k (27) 
k=0 

(V) = - D  + ~ Vtk)h k (28) 
k=0 

The relations between T (k), V (k), and E (k) can be easily extracted and are 
as follows: 

and 

By using relations (17) and (18) we can extract the coefficients C ~  ) 
used in (12) in order to evaluate the orbital mean square radii. The h-series 
for (r  2) is 

(r2)nl = C~ O) + C~l)h + C~2)h 2 + C~3)h 3 + , . -  

=an---JbU 2 _  VI [ 1 2 a 2 1 _ 4 1 ( 1 +  1) + 3]bh 
CO 80.) 4 

anl 
+ ~ [20a21(17V~ - 12V2to 2) 

+ 361(! + 1)(4V2o~ z - 5V~) + 335V 2 - 300V2co2]b3/2h 2 

1 
256tolo {80a4t( 75V3 - 99ViV2to 2 + 28V3to  4) 

- 8a2t(121(l + 1)(43V~ - 63ViV2to 2 

+ 20V3to  4) - 1707V 3 + 2655V1V2to z - 980V3o~ 4) 

+ ( 4 / ( / +  1) )2( l lV 3 - 27VlVeto: 

+ 12V3to 4) - 241(1 + 1)(91V 3 - 171V1V2co 2 + 76Vato a) 

+ (171V 3 - 315V1V2o~ 2 + 140V3o~4)}b2h 3 + .." (31) 
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For potentials of the form (2), (r2)nl is expressed in terms of the depth and 
radius as follows: 

d2 anlR b u2 + [12a2t - 41(l + 1) + 3]b (r2}nl- ( -Dd l )  112 - ~ 1  

anl(- Ddl) I/2 
64D2~R {20a~t(12d~d3- 174)  

+ 12did3[25 - 12 / ( /+  1)] + 5d~21361(/+ 1) - 67]}b 3n 

1 
25602d~lR2 { 80a41(28d~ld4 - 99dldzd3 + 7 5 4 )  

- 8a2t{20~d4[121(l + 1) - 49] 

+ 9dld2d31295 - 84 / ( /+  1)] + 3 ~ [ 1 7 2 / ( / +  1) - 569]} 

+ [4l(l + 1) - 3] 

• {12~d4141(1 + 1) - 35] + 27dld2d3135 - 41(l + 1)] 

+ d3144l(! + 1) - 513]}}b 2 + ... (32) 

In the same way we can obtain moments of higher order. 

4. APPLICATION OF THE DERIVED FORMULAS 

Typical members of the potential class in question are the Gaussian 
potential, which is given by 

V(r) = - D e  -r2/R2, 0 --< r < ~ (33) 

and the well-known Poeschl-Teller-type potential, given by 

- D  
V(r) coshZ(r/R) , 0 --< r < ~ (34) 

where D is the potential depth and R its radius. Such potentials may be 
considered, for example, a first approximation to the self-consistent potential 
for a nucleon in light nuclei, or for a A-hyperon in light hypernuclei in 
nonrelativistic quantum mechanics. In such a case the potential radius R is 
expressed (in the framework of the rigid-core model) in terms of the mass 
number of the core nucleus by means of the relation R = roA~ t3, where Ac 
is the mass number of the core nucleus (Ac = A - 1). The expression for 
dk for the Gaussian potential is 

( -  1) k 
d, - (35) 

k! 
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The energy h-series (where h = 1/R 2, co 2 = D/R 2) for the Gaussian 
potential has already been obtained by Lai (1983) up to h 3 (see also Sharma 
et al., 1980). 

In our study of the above potentials, we derive the ms radii of the particle 
orbits (r2).t, while the expectation values of the potential and the kinetic 
energy follow readily from (29) and (30). For the Gaussian potential the 
expression for (r2)~t is 

(r2).l = ant bU 2 + 1 -~- ~ [12a2/ -- 4l(l + 1) + 3]bh 

3ant 
+ ~ [60a2l - 28l(l + 1) + 45]b3/2h 2 

+ m 1 
6144to 4 {4400a4t + 8a2t[791 - 276l ( /+  1)] 

+ 3[3 - 41(l + 1)][12l(l + 1) + 23]}bZh 3 + ... (36) 

An interesting feature of the potential (34) is that the corresponding 
SchrOdinger eigenvalue problem can be solved exactly for the s-states. That 
potential has been used rather extensively in studies of hypernuclei (Lalazissis 
et al., 1988; Lalazissis, 1989, 1993). The exact analytic expression for the 
s-state energy eigenvalues is (Lalazissis et al., 1988; Lalazissis, 1989, 1993; 
Bessis et al., 1982) 

E n o -  21xR z 2 n + ~ - ~  - - +  1 (37) 

Note that for the energy eigenvalues 

n = 0, 1, 2 . . . . .  nmax, 
l[( ] 

nmax<~ 1 + h2 } - 3  

For the same states exact analytic results are also available, through the 
application of the Hellmann-Feynman theorem, for (T) and (V), and thus 
one can test safely whether the first terms of the corresponding expansions 
constitute a good approximation to the relevant quantities. The expressions 
(Lalazissis et aL, 1988; Lalazissis, 1989, 1993, 1994) for (T)n 0 and (V)n0 can 
be written, respectively, as 

2D(2n + 3/2) 
(T).o = Eno + D - , n = 0, 1, 2 . . . . .  nmax (38) 

x/81.l,DR2/h 2 + 1 



Even-Power Series Potentials 2061 

2D(2n + 3/2) 
(V).o = - O  + 

x /8~DRZ/h  z + 1 ' 

The expressions for the coefficients dk are 

d 0 = l  

dl = - 1  

d2 = 2/3 

d3 = - 17/45 

d4 = 62/315 

ds = - 1 3 8 2 / 1 4 1 7 5  

n = 0, 1, 2 . . . . .  nmax (39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

According to the analysis of  Section 2, we have the fol lowing H V T  energy 
series (again here h = I /R  2 and to 2 = D/R2): 

= - D + 2toanl b112 - ~2 [12a2t - 41(l + 1) + Enl 3]bh 

anl + ~ [15 - 41(l + 1)]b3/2h z 

4 
945~o2 l(l + 1)[12a21 - 4l(l  + 1) + 3]b2h 2 

ant {33280a~tl(l  + 1) 
907200to 3 

- 1 2 8 1 6 [ / ( / +  1)] 9 + 251440/(l + 1) + 567]}bs/2h 3 

1 
1247400to4 l(l + 1){32720a4t 

+ 8a2~[1445 - 8281(1 + 1)] 

+ [3 - 41(1 + 1) ] [1084 / ( /+  1) - 2445]}b3h 4 + .-. (46) 

I f  we set l = 0 in the above expression, the ensuing expansion is summed  
up, leading to a c losed-form result which is identical to relation (37). 

According to relations (29) and (30), we can readily derive the expecta-  
tion value of  the both the kinetic and the potential  energy in the fo rm of  a 
h-series. 
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Moreover, using (32) we can obtain the corresponding (r 2) h-series for 
the PT potential: 

(r2)nl = ant bl/2 + 1 ~ [12a~l - 41(1 + 1) + 3]bh 

anl + ~ [85a~j - 361(l + 1) + 50]b3/2h 2 

+ 1 
120960to 4 {105840a41 + 24a~114725 - 15321(1 + 1)] 

- 89121l(1 + 1)] / + 129841(l + 1) - 4725}b2h 3 + .-. (47) 

5. NUMER IC AL RESULTS, C O M M E N T S ,  AND SUMMARY 

In this section we give numerical results for the Poeschl-Teller-type 
potential (34). The potential parameters we use here for purposes of illustration 
were obtained by a least squares fitting procedure to experimental ls-state 
energies of a A-particle in hypernuclei and are as follows (Lalazissis et al., 
1988; Lalazissis, 1989, 1993): 

D = 38.9 MeV r0 = 0.986 fm 

The results are displayed in the tables that follow by using the following 
notation: 

Ac: The mass number of the host nucleus. 
Ehvt: The total energy value obtained through the HVT-HFT scheme 

using the terms given in the table. 
Ean: The total energy value from the analytic solution (only s-states). 
Ep: The total energy value from a perturbation method (Lalazissis, 1993) 

(only for the n = 0 states). 
Eint: The total energy value obtained through numerical integration. 
(,2\~/2. The root-mean-square radius of the orbit of the particle obtained /hvt" 

through the HVT-HFT scheme. 
-2\112. -lint- The root-mean-square radius obtained through numerical 

integration. 
The energy and (r 2) series obtained through the present scheme are 

provided on a term-by-term basis so that the accuracy for various hypernuclei 
can be observed. The first few terms of the HVT series for the s-state energies 
as well as for the corresponding radii are seen, in the whole range of Ac values 
studied, to practically coincide with the ones extracted through numerical 
integration, or calculated by means of the corresponding exact expression in 
the case of the s-states of the PT-type potential (34). 
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For the lower excited states the accuracy of the HVT energy values is 
in general quite satisfactory, in particular for the heavier elements. We should 
also keep in mind that the computation of various quantities through numerical 
integration is also subject to certain inaccuracies, which are expected, how- 
ever, to be usually very small. We also observe that the HVT energy eigenval- 
ues with n = 0, for the PT-type potential (34) are also in quite good agreement 
with the values Ep (see Table I) obtained with the perturbation method of 
Lalazissis (1993). The HVT values are in fact a little closer to those obtained 
by numerical integration in comparison to the Ep ones. The remarks previously 
made regarding the accuracy of the HVT energy quantities also hold to some 
extent for the orbital radii (Table II), although in that case the accuracy is less 
satisfactory, mainly for certain states and in particular for the lighter elements. 

We note that the formulas derived in this paper for the extraction of 
both (T} and (V} can be linked directly to the previous papers which have 
calculated the energy series for a great number of potentials. Thus, one may 
obtain (T} as well as (V} by modifying the HVT energy coefficients in a 
way analogous to that followed in the present paper. 

We finally observe that the HVT values of both the energy quantities 
and the orbital radii are, for a given state, more accurate for the heavier 
elements than for the lighter ones. This is in accordance with our expectations, 
since, as observed in Section 2, in the former case the parameter s is smaller. 
Furthermore, the accuracy of the results depends on the state (being more 
satisfactory for the lower states). 

In conclusion, we summarize the main results of the present 
investigation: 

1. The HVT-HFT scheme is applied to a wide class of potentials, namely 
of the type (1) or of the form (2). So far as we know, such a procedure has 
never been followed before in such a unified way in connection with the 
HVT-HFT scheme. The energy eigenvalues are expressed in terms of the 
potential parameters, the mass of the particle, and the corresponding quantum 
numbers, in the form of an expansion which is suitable to be applied to 
specific examples. In a number of cases, the first terms of this expansion 
yield values of very satisfactory accuracy. 

2. The HVT-HFT scheme is extended (for the first time, to our knowl- 
edge) to obtain analogous expansions for other interesting quantities, such 
as the expectation values, of the kinetic and potential energy operators [by 
using the Hellman-Feynman theorem, as done in other studies for the same 
purpose, such as in Bertlmann and Martin (1980)] and of the mean-square 
radius of the orbit of a particle. 

3. The accuracy of the first terms of the expansion depends on the state 
as well as on the potential parameters and the particle mass. The lower the 
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Table 2. The Orbital Radius for the Poeschl-Teller Potential. 

ac n 1 C~ ~ C~l )h  C~2)~k 2 C~3)~k 3 C~4)X 4 C~5)h 5 ~ 

6 0 0 1.97 1.34 0.88 0.58 0.38 0.25 2.32 2.43 
9 0 0 2.19 1.26 0.70 0.39 0.22 0.12 2.21 2.25 

11 0 0 2.32 1.24 0.64 0.33 0.174 0.09 2.19 2.21 
15 0 0 2.53 1.2l 0.55 0.257 0.11 0.055 2.17 2.18 
15 0 1 4.22 2.82 1.95 1.43 1.08 .84 3.51 4.04 
31 0 0 3.17 1.16 0.41 0.14 0.05 0.01 2.22 2.22 
31 0 1 5.28 2.71 1.45 0.81 0.47 0.28 3.32 3.39 
80 0 0 4.30 1.14 0.29 0.07 0.02 0.005 2.41 2.41 
80 0 1 7.17 2.66 1.02 0.415 0.175 0.076 3.39 3.39 
80 0 2 1 0 . 0 3  4.78 2.46 1.36 0.79 0.47 4.46 4.55 
80 1 0 10 .03  5.69 3.07 1.64 0.88 0.48 4.67 4.72 
80 1 1 12.90 9.03 6.14 4.19 2.90 2.04 6.10 6.53 

120 0 0 4.91 1.13 0.25 0.056 0.013 0.003 2.52 2.52 
120 0 l 8.18 2.64 0.89 0.31 0.12 0.04 3.49 3.49 
120 0 2 1 ! .46 4.76 2.13 1.03 0.52 0.27 4.49 4.52 
120 0 3 14 .73  7.47 4.20 2.55 1.65 0.71 5.60 5.87 
120 1 0 11.46 5.66 2.66 1.24 0.58 0.27 4.68 4.70 
120 I 1 1 4 . 7 3  8.98 5.33 3.17 1.91 1.17 5.94 6.10 

state and the smaller the value of the parameter s = (h2 /2 lxDR2)  u2, that is, 
the deeper and wider the potential and the larger the particle mass, the fewer 
are the terms needed for the achievement of a satisfactory accuracy of the 
above-mentioned quantities. 

4. The procedure discussed is applied to two typical two-parameter 
potentials, the Gaussian (33) and the Poeschl-Teller (PT) type (34). Extensive 
numerical calculations are performed in a number of cases. The accuracy of 
our HVT values is assessed by comparing them with those obtained either 
by solving the Schr6dinger equation numerically or, whenever possible, using 
exact analytic expressions. The accuracy of the approximate analytic expres- 
sions of the quantities considered is discussed in connection with a problem 
of physical interest, namely that of the motion of a A-particle in hypernuclei. 
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